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SUMMARY

A theory of filamentary structures consisting of monotropic

membranes is presented. Applications to isotensoid pressure ves-

sels with rotational symmetry demonstrate the use of the theory.

Particular attention is given to applications of filamentary design of

variable-geometry expandable structures.

An extension of the theory to pressurized filamentary structures

subject to centrifugal loading and the special case of meridional

winding patterns are presented in two Appendices.

Physical interpretation of the resulting shapes and winding pat-

terns leads to a discussion of the morphology of filament-wound

pressure vessels.

Experimental data, obtained from filament-wound toroidal pres-

sure vessels, confirm the validity of the theory and demonstrate

application of the analytical design technique for filamentary struc-

tures.



INTRODUCTION

A review of recent developments in the field of advanced struc-
tures for aeronautical, missile-borne, and space applications
shows an increasing interest in exploiting the remarkable physical-
mechanical properties of fibered materials. A large volume of
published information (See, for instance, references i, 2, 3, and 4)
is available, particularly in the field of filament wound structures.
The attraction of filamentary structures may be found in three areas:

(1) Structures of considerably higher strength/weight ratios
are potentially possible (and have, in certain instances, been
demonstrated) by use of filamentary materials as compared to
similar structures made from conventional isotropic material
{reference 5).

(2) The potential of obtaining relative insensitivity to crack-
propagation due to accidental damage in filamentary arrays typ-
ical for filament-wound structures has been shown theoretically
by Hedgepeth {reference 6). Furthermore, tests on single fi-
bers of many materials show increased strength and resistance
to elevated temperature (reference 7), creep, and fatigue as
compared to the properties of the same materials in bulk form.
Realization of the implied potential performance gains depends
upon proper utilization of fibers (isotensoid design) and remains
to be generally demonstrated in practice.

{3) The peculiar, non-isotropic character of the filamentary
textured material may be used to advantage in specific applica-
tions. One of particular interest is the design of expandable
structures with variable geometry, for which a multitude of
space applications are presently considered. A general analyt-
ical treatment of the problem of large deformations in elastic
materials reinforced by inextensible chords has been presented
in reference 8.

There exists a need for a fundamental approach to the problem
of design synthesis of filamentary structures. The present report
deals with a specific and relatively important species of filamentary
structures, namely those produced by filament-winding processes,
both from the point of view of developing a basic understanding, and



from the point of view of particular applications to toroidal pressure
containers.

This investigation was performed with the financial assistance
of the National Aeronautics and Space Administration
under Contract NASr-8.
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P

R

T

V

X

Z

Fiber helix parameter

Bending stiffness of analog column

Coefficients of the first fundamental form

Coefficients of the second fundamental form

Elliptical integral of the second kind

Force/unit length

Elliptical integral of the first kind

Pressure load parameter

Fraction of filament count

Load, (also used as "point on surface")

Non-dimensional radial coordinate

Fiber force

Volume

Radius vector

Non-dimensional axial coordinate

-_ Unit vector
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P

Distance between poles

Integer

Cur vatur e

Argument of elliptical integral

Specific strength

Number of filaments (fiber count)

Mass/unit length

Pressure

Radius

Arc length

Cur vilinear coordinates

Cartesian coordinates

Centrifugal load parameter

Slope of meridian

Helix angle

Central angle of fiber spacing

Central angle

Radius of curvature

Angular velocity

Integration variable



THEORY OF MONOTROPIC MEMBRANES

Definitions

Consider a thin-walled shell made from a material which con-
sists of an array of filaments as shown in figure i. The thickness of
the shell may be variable, but will always be sufficiently small so
that the geometrical properties of the shell can be described by its
middle surface (membrane).

Consider now a small but finite domain of this shell. The geo-
metrical arrangement of the filaments traversing this domain shall
be such that the tangents to all filaments have a uniquely determined
direction, described by an angle _ between the filament centerlines
and a coordinate line inscribed on the membrane surface. The cen-
terlines of all filaments, thus, belong to a "one parametric" family
of curves. Mathematically, this can be expressed by

-- B(u, v) (1)

where u and v are surface coordinates and _(u,v) is a unique and

continuous function of the surface coordinates u and v The con-

dition of uniquely defined filament direction shall hold for all regular

points of the membrane, but may not hold for points of singularity

such as poles, lines of cross-over, etc.

Assume that the filaments are completely flexible and capable of

carrying only normal forces only in the direction _ of their local

tangents. If these filaments are bonded together by a matrix mate-

rial, consider this matrix to be completely compliant such that

stresses in the matrix are negligible. Thus, the only stresses that

can exist in this shell are normal stresses in the locally defined di-

rection

A structure of this nature shall be called a Monotropic Mem-

brane, to indicate the unique and predetermined character of stress

distribution.

Filament-wound structures can frequently be considered as com-

binations of contiguous or intermeshing monotropic membranes.



This is particularly true if the filaments are relatively rigid and the
matrix or binder material is relatively flexible, so that the predom-
inant part of the structural loading is carried by the filamentary
constituent of the composite material.

Geometry of Monotropic Membranes

In this paragraph, geometrical relations referring to surfaces
and curves on surfaces are summarized from references 9 through
Ii for convenience of the subsequent discussion of the properties of
monotropic membranes.

Consider the middle surface of the shell described by a vector
X extending from an arbitrary origin "O" to any point "P" on the
surface shown in figure 2. The surface is inscribed with a system
of orthogonal curvilinear coordinates u,v For the purpose of
this discussion, the lines u = Constant and v = Constant will be
chosen as the lines of principal curvature of the surface.

Let ('et' e , e ) be a triad of mutually orthogonal unit vectors,
n g

moving along the centerline of a filament located on the surface

where

-g
t is tangential to the filament centerline

I

e
n

is perpendicular to the surface

e

g
is located in the tangent plane to the surface

centerline and normal to the filament tangent.

The rate of change of the unit tangent vector -6t , while pro-

ceeding along the filament centerline for a differential length ds ,

is equal to the curvature vector:

d-_
-- t

k - ds (Z)

m

where k is a vector collinear with the radius vector of curvature

1
and of absolute magnitude --

P

D
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The normal curvature vector
n

plane spanned by "_t and -en Its magnitude,

can be expressed by the scalar vector product

k = (k._)
n n

k is the projection of k into a

the normal curvature,

(3)

The Geodesic curvature vector ]_ is the projection of ]_ into
g

the tangent plane to the surface. Its magnitude, the geodesic curva-

ture, can be expressed by the scalar vector product

k = (k. e ) (4)
g g

Curves of vanishing geodesic curvature are called geodesics. They

have the characteristics of straight lines in the non-Euclidian ge-

ometry of the surface described by _ Thus, they are also curves

of minimum (or maximum) distance between two points on the sur-

face. A particularly important characteristic of geodesics is the

fact that geodesics retain their geodesic character during an inex-

tensional (bending) deformation of the membrane.

The pertinent geometrical properties of the surface can be ex-

pressed in terms of two fundamental quadratic forms:

(i) The first fundamental form describes the length ds of a

line element on the surface. For an orthogonal surface coor-

dinate system (u, v) this first fundamental form reduces to

(ds) 2 = (dX • dX) = EldUZ + GldV 2 (5)

where

( )
_X _X

E =

_X 8X

= %-4-

(2) The second fundamental form is a measure of the change of

the surface tangent plane or surface normal vector, i.e., a
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measure for the curvature and twist of the surface. For or-
thogonal coordinate systems, the second fundamental form re-
duces to

- (dX d-_)n = Eli du2 + GII dv2 {6)

where

I 82y" -_iI

EII = Bu 2

GII = 8v 2

Now let kn{v) and kg(v ) be the normal and geodesic curva-

ture of the lines v = Constant , and let kn(u) and kg{u ) be the

normal and geodesic curvature of the lines u = Constant

The normal curvature of the filament centerline forming an angle

with the line v = Constant is then given by Euler's Theorem for the

orthogonal system of surface coordinates formed by the lines of

principal curvature :

2

kn{_) = kn(v) cos _ + kn(u) sinZ_ {7)

The geodesic curvature of the filament centerline forming an an-

gle _ with the line v = Constant is given by giouville's Theorem

for any orthogonal system of surface coordinates:

d_ cos_ + k sin_
kg(_) = d-"_ + kg(v} g(u)

(8)

Finally,

lines are related to the coefficients of the first and second funda-

mental forms of equations {5} and (6) as follows:

the normal and geodesic curvatures of the coordinate

E }
kn(v) - E I

GII

kn{ u) - G I

(9)



E
I i

k =

g(v) 3v ZE I

3 GI 1

kg(u) -- 5u 2GI q_I

(IO)

Equilibrium Condition

Consider an element of a filament of length ds , subject to an

axial force vector T and an external force vector/unit length F'

of arbitrary direction as shown in figure 3. Equilibrium for the

element demands that

TIs+ds) - rIs) + F'(s) ds = 0

or, in differential vector form

dY(s )
+ F' = 0 (ll)

ds s

The vector T(s) can be written as

is the magnitude of the force vector

(11) can be written as

T(s) =_t T(s ) , where T(s )

T at s Thus, equation

d m

(T,%s) -et) + F' = 0d--_

and by partial differentiation of the first term, considering equa-

tion (2) yields:

dT(s) "_ + k + F' = 0
ds t T(s) (s)

(IZ)

Scalar multiplication of equation (12) in turn with the three unit

vectors of the triad (et, e , e ) yields three scalar equilibrium
n g

conditions:
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dT
-- + F' = 0
ds t (13)

Tk + F' = 0
n n (14)

Tk + F' = 0
g g

where

I

F t = (F'. et)

F' = (E'._)
n n

F' = (F'.-_)
g g

are the three components of the external load vector in the three

directions indicated by the triad (-et'e , e ) , respectively (fig-
ure 3). n g

(15)

Discussion

The equations (13) through (15) relate the filament load to the

geometrical characteristics of the filament given by -et ' kn '

and k The two curvatures are related to the properties of the
g

lines of principal curvature serving as surface coordinates by

Euler's and Liouville's Theorems, equations (7) and (8) respec-

tively, and may be related to the coefficients of the fundamental

forms as given in equations (9) and (10).

An examination of the equilibrium equations (13) through (15)

yields the following results:

(i) For a given monotropic shell, only one of the three com-

ponents of external load vector F' can be freely chosen, while

still satisfying all conditions of equilibrium. This implies that

the monotropic shell is twofold statically underdeterminate,

i.e., it will act as a mechanism rather than as a structure un-

der all external loads not satisfying the conditions of equations

(13) through (15). This effect may be beneficial where a
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"variable geometry structure" such as a foldable and expandable
shell is desired. On the other hand, however, peculiar insta-
bility phenomena, as discussed in the latter portion of this re-
port, may occur, requiring particular study and attention.

In general, it is necessary to have three contiguous or in-
termeshing layers of monotropic membranes present in a struc-
tural shell in order to produce a statically determinate system.

= 0 the fiber force T is invari-(3) For the case where F' t ,

ant throughout the structure. Such a structure is called "Iso-
tensoid" (from iso-equal, tensus-extension) to indicate the

uniform character of stress and strain in the load carrying ma-

terial. An isotensoid structure, furthermore, constitutes an

optimum design, since the material will be stressed equally

(i. e., utilized uniformly) at all points.

(3) For monotropic shells that are loaded by pressure loads

normal to the surface, both F' and F' vanish. The struc-
t g

ture is isotensoid and the geodesic curvature k of the fila-
g

ments vanishes; therefore, the curves of filament centerlines

describe geodesics of the membrane surface. These are of

particular importance for the case of filament winding, since a

fiber placed under some tension on an arbitrarily shaped man-

drel will tend to follow a geodesic on the mandrel surface.

The general problem of optimum isotensoid design synthesis for

a filament-wound structure may now be stated as follows:

For a given external load, find the surface shape and

associated filamentary geometry of one or several mono-

tropic membranes for which F' vanishes.
t

This problem, applied to pressure loaded shells of revolution,

will be discussed in detail in the remaining portion of the report. A

different situation arising from a combination of pressure and cen-

trifugal loads is discussed in Appendix A. This case demonstrates

the application of the basic approach to filamentary design of not

necessarily isotensoid character and for more complex loading con-

ditions.
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ISOTENSOID PRESSURE SHELLS OF REVOLUTION

Basic Equations

Consider a surface of revolution (r,(D, z) , as shown in figure 4.

The coordinates of the vector X extending from the origin of a Car-

tesian system (x y z) are

I_ cos(O 1

= sln_

z

(16)

The lines of principal curvature used as surface coordinate

lines are the parallel circles u = z = Constant and the meridians

v = _O = Constant

is:

The differential vector

dX = _-z dz + _d_o

dX in terms of the coordinates

-_z cosg_dz - r sing_ d

= sin(o dz + r cos_O do

dz /

(z_) ,

(17)

The unit vector normal to the surface has the coordinates

cos(_ cos_O 1

-@ = cosO_ sin(O (18)
n

sino_

where (_ is the angle between the local surface normal _ and the

(x y) plane, n

The second derivatives of X , with respect to the principal

curvature coordinates, are:
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and

_2 Z

2
_z

_2 Z

2

/ d2r c o s(13_

dz

I d2r sin@

° /

Ii r cos_o 1

r s inO

0

(19)

From equations (5) and (17) the coefficients of the first fundamental

form become:

G I

Similarly,

E I =

from equations (6), (18),

second fundamental form become:

= 1 + -_z

) 2-_ = r

(20)

and (19) the coefficients of the

_2_ _ ) d2r
= e - cosO_

(2i)

From equations (20) and (21) the principal curvatures of the coor-

dinate lines become:
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Eli

kn(v) = -_I

d2r

dz2 l

GII cos_
k - -
n(u) G I r

(23)

The negative signs appearing in equations (22) and (23) are a con-

sequence of the sign conventions used for C_ and PM , as indicated

in figure 4. It is, of course, possible to derive the values of prin-

cipal curvature by inspection of figure 4 directly. The analytical

development has been given here to demonstrate the application of

an approach that may be used for analysis of generalized surfaces.

The normal curvature in direction /3 becomes, according to

Euler's Theorem (equation (7)):

1 28 cos0_ 2= --- cos sin _ (24)
knB DM r

The direction _ of the geodesic filament is obtained by integration

of giouville's Theorem (equation (8)) with kg(B)_ = 0 For surfaces

of revolution, this integration yields the Theorem of Clairaut:

r

sin_ = sinB _ (25)
o r

and r are arbitrary constants of integration.where sin_o o

Let C = sin_o

R = r/r

o

: filament helix parameter characteristic

for the filamentary geometry.

: non-dimensional radius of shell.

Then, equation (25) can be written as
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and

C
= -- (25a)

sin_ R

1 _/R2 _ C 2 (25b)
cosB =

V

Consider now a structural shell of revolution consisting

of several layers of monotropic membranes, as shown in iigure 5,

subject to a rotationally symmetrical pressure load P(z) that may

be variable along the meridian, but is uniform along any parallel

circle Each monotropic membrane is assumed to comprise n.
• 1

filaments uniformly spaced along any parallel circle of the shell,

each filament of each monotropic membrane forming an angle

sin_ = C. with the meridian at the extreme perimeter of radius
O. 1

1

and each filament carrying an equal and uniform axial force T.

The normal load/unit length carried by each filament is

r

O

2r_

F' = Pi- c°s_i (26)
n. n.

I i

where Pi is the normal pressure carried by each monotropic

membrane "i"

The equilibrium condition (equation (14)),

(26) and (24), then becomes

1 coso_ sin2_i

__ cos_i +
PM r cos_i

considering equations

2rW

Pin. T 0 (27)
1

n.

1

introducing the "non-dimensional" filament count N. =- , where
i n

n is the total number of filaments traversing a parallel circle, and

substituting equations (25a) and (25b) into equation (27) yields:

nT

Pi =
2_r 2R

0

N.C 2 _/R2 C.2• cos(_ r N. -
I I 0 I i

+

2 PM R

R 2 _R 2 - C i

(28)



16

Summing over all monotropic membranes "i"

non-dimensional meridional curvature yields:

r

o
N _

PM

-l

_R 2 C. 2 _R 2 C. 2Ni - i - l

, and solving for the

where K -

2

cos0_R _ N.I C.I IiR 2 P(Z)po
(29)

nT
is the non-dimensional pressure load param-

eter which is characteristic for the curvature properties of the shell.

Equation (29) describes the meridional curve of the shell of rev-

olution in terms of the intrinsic coordinates DM and a , as a

function of the characteristic parameters C. and K .
1

An integral form of equation (29) can be derived by considering

the equilibrium conditions pertaining to the whole shell, as shown in

figure 5.

Equilibrium in axial direction requires:

( ) (  os i)N. nT cos_ - r = E N. nT cos0_ r
I o. o _Po I o _P(z)

1

or, solved for cos0_:

R
COS0L =

_R2 2EN i - C.
1

-Co/!
(30)

Equilibrium in torque around the z-axis for a single filament

requires (since the pressure loading can not contribute to a torque):

T sinai r = T sin_ r
O. O

1

which simply reduces to the Theorem of Clairaut (equation (25)) by

division through T.
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For the complete shell, torsional equilibrium in absence of an
externally applied torque requires:

N.C. = 0 (31)
1 i

A further condition is imposed for closed pressure vessels of

singly connected volume without externally applied axial forces

("Bottles").

For this case, axial equilibrium requires that:

N. Vq - C _- _K (32)
1 i 2

Finally, the problem of defining the filamentary geometry can

be solved by integration of the differential geometrical relationship

between %0 and a , along a geodesic. By inspection of figure 4

we obtain:

DM da tan_ = r de

or, integrated

ci P___Md_

_(_) " _°((_=°)-- f _RZ C2r°R - i
o

(33)

Methods of Solution

Equation (30) represents an integral form of equation (29)

which can be transformed into a first-order non-linear differential

equation for R(Z ) suitable for numerical integration by substituting

cos_

-i

2

where
z

Z =_
r
o

is the non-dimensionalized axial coordinate.
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The resulting differential equation can be written in finite differ-
ence form for numerical integration by means of a digital computer.

Aprogram has been prepared for an IBM, Type 1620 computer,
capable of handling arbitrary inputs for N., C. and K , and com-

i 1

puting both intrinsic (p, 0_) and non-dimensionalized Cartesian co-

ordinates (R, Z) of the meridional shapes by means of a modified

Runge-Kutta method (reference 12). Additional output data available

from the program are the filament geometry (0(0_) as well as sur-

faces S and enclosed volumes V of the bodies of revolution gen-

erated by rotating the meridional curves (R, Z) around the z-axis.

Analytical solutions of equation (30) are possible. These lead to

expressions which may be reduced to elliptical integrals. In the

general case, however, the resulting expressions are quite involved

and time-consuming for evaluation. As a consequence, direct digital

integration appears to be a more economical approach for the pur-

pose of obtaining design data. An exception is the case for C = 0 ,

discussed in Appendix B. There, the solution can be reduced to

simple combinations of elliptical integrals of the first and second

kind, which are tabulated, for instance, in reference 13.

For the purpose of a graphical solution, equations (29) and (30)

are suitable in their intrinsic form. Tables of PM and 0_ in func-

tion of r/r can be computed for any given set of I_, C., N. from
o i I

equations (30) and (29). With slope _ and radius of curvature OM

known, very accurate meridional shapes can be constructed by

means of rule, compass, and protractor.

In addition to the numerical and graphical methods mentioned,

the particular case of C = 0 (i. e. , meridional fiber direction only)

allows solution of the isotensoid meridional shape equations by

means of a column analog, as shown in figures 6 and 7. This analog

is described in more detail in Appendix B.

All three methods, digital integration, graphical solution, and

column analogy, have been used to generate the data shown in fig-

ures l0 through 20 of this Technical Note.
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Discussion of Results

For the purpose of an initial evaluation of possible isotensoid

pressure vessels, the number of free parameters may be reduced

as follows:

(i) The pressure p is assumed to be constant throughout

the length of the shell, i.e., P(z) = Po Constant.

(2) The shells are considered to consist of two monotropic

membranes satisfying the torque equilibrium equation (31):

where N 1 -- N 2 = 0. 5

and C I = - C 2 = C

With these assumptions, the intrinsic equations (29) and (30}

reduce to

r
o

D M I Ic°s c2 1- == - KR 2

_R2 C 2 R _R2-C 2

and, in integral form:

COS_ =

where C and K

pressure shell.

2_ C2 2

are the defining parameters of the isotensoid

(29b)

(30b)

Inspection of equations (Z9b) and (30b) shows that no real so-

lutions for either p or Ol exist if R < C Thus, the minimum

distance from the axis of rotation which a geodesic filament can

have is given by its helix angle defined by C An important de-

sign implication that may be derived from this is that there will

always be a polar opening for any geodesically helix wound (C ¢ 0)

pressure vessel. The size of the polar opening Rmi n can be com-

puted from equation (30b) by letting

cos_ = i 1



2O

Excluding the trivial solution
R is obtained:min

__ 2
K (i _ Rmin)2

R=l

+

a relation between K, C, and

R 2 2
rain- C

÷
min

(34)

This equation is useful if R
min

and a compatible pair C and K

sign of the pressure vessel.

is given as a design parameter,

need to be determined for the de-

The solutions that may be obtained for the meridional shapes

R(Z ) by solution of the intrinsic equations (29b) and (30b) can be

classified according to their general character for a range of

parameter K

For the purpose of this discussion, only the range of K > 0

will be considered. Negative K-values yield similar shapes (cor-

responding to either negative pressure or compressive fiber force)

and yield no new general insight into the problem even though they

may be important for particular design objectives. The various

shapes for positive K-values are discussed below and are shown in

schematic form in figures 8 and 9:

(i) Hyperboloid (figure 8(a))

Here the extreme perimeter r is a minimum. For all
O

positive z , cos_ is always negative and DM is always

positive. This requires K = 0 and results in the fila-

ments being straight lines rotating around the z-axis ,

forming a hyperboloid of revolution. This is a surface of

zero curvature, corresponding to zero internal pressure P

(2) Cylinder (figure 8(b))

-- OO

For a cylinder R - 1 , cos_ - 0 and PM- These
conditions are satisfied if

K ___

2
C
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(3) Corrugated Tube (figure 8(c))

A corrugated tube will exhibit a point of inflection where
DM = + _ at a value of R > C _ will always be smaller

than ±-_ This requires that

2
0 < K <

2
C

If K<

I - C 2

side the cylinder

C 2
K>

J

V1 C 2

cylinder R = 1

figure 8(c).

, then the corrugations are located out-

R = 1 and r is a minimum; if
o

then the corrugations are inside the

, and r is a maximum, as indicated in
o

For those corrugated tubes ("bottles") which satisfy

the axial equilibrium equation(32), the following relations

hold:

The minimum radius

helix parameter C by

R is related to the fiber
min

Z 2Rmi n - C
V1 - C =

Z

3
R
rain

The slope

cos_

of the meridian is given by

R 3 _/._- C Z
Z

_ C 2

The radius at the inflection point of the meridian is

= _2C
R(p = _)
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(4)

The slope at the inflection point is given by

c°s_(n =_o)

Cusp (figure 8(d))

For the case of a cusp,

and O M becomes 0 at

lied if

2
K -

_/I - C 2

_- 32 ,/5 c 2@- ca

the angle
R--C

(_ becomes indefinite

This condition is saris-

The cusp shape constitutes the transition between the cor-

rugated tube and the progressive loop.

(5) Loop (figure 9)

Looped curves, which are of particular interest for the

generation of toroidal pressure vessels, are generated if

PM is negative for all values of R This requires

2
K >

V1 - C 2

Three distinct types of loops are generated as K

(a)

(b)

(c)

The radius R H at which the meridional curve is horizontal

(i. e., the location of maximum thickness of the toroid gen-

erated by rotation of the loop) is

increases:

A progressive, periodic loop (figure 9(a)).

A closed loop forming the transition between pro-

gressive and regressive, periodic loops (figure 9(b)).

A regressive, periodic loop (figure 9(c)).

1 2 C 2R(_=_/2) = -_ _1 -
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A summary of the domains in the positive K-C plane corre-

sponding to the various types of solutions is shown in figure i0.

Also shown in figure i0 are the curves Rrnin = Constant , and the

C-K values resulting in "bottles" according to equation (32).

A number of cases for various parameter combinations have

been worked out by digital integration of equations (30) and (33) com-

plemented by graphical and column analog studies. Primary atten-

tion was given to the looped type of solutions which are of interest in

the design of toroidal pressure vessels.

Figures iI through 14 show the meridional shapes for I/2 pe-

riod (0 --<C_ --<O) of double helix wound shells according to equations

(29b) and (30b) for K > 2 and for C-values of 0, .25, . 5,

__ C 2

and . 7'5, respectively.

Figures 15 through 17 show solutions for the case of looped

meridians for shells consisting of three layers; C l = 0 , C 2 = .5

and C 3 = -. 5 , with variable ratios of N I/N 2 and with N 2 = N 3

Figure 18 shows a case with 6 layers, representing the case of

a corrugated tube, together with the filamentary geometry of the

various layers.

In the cases of multiple C-values, shown in figures 15 through

18, return points occur at R = C. , where the corresponding mono-
i

tropic membrane folds back into itself, reversing the helix angle

and thus forming Ci + 1 = - C.i

Figure 19 shows an example of an unsymmetrical loop resulting

from linearly variable pressure simulating the situation of a pres-

sure vessel subject to hydrostatic pressure gradients such as may

be encountered in a liquid container during the boost phase of a

rocket.

Figure 20 shows a realization of the particular case for a closed

loop indicating the general shape and the disposition of the winding

pattern.
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MORPHOLOGY OF CLOSED PRESSURE VESSELS

The range of possible isotensoid pressure shells of revolution

with meridional shapes, as shown in figures II through 20, is lim-

ited by the restriction of the parameter ranges and combinations that

have been considered. Nevertheless, five basic types of possible

closed pressure vessel designs are identifiable from a review of the

presented material. A brief discussion of their general character-

istics follows:

(1)

Containers with Simply Connected Volume

Type i (figure 21): Closed shells containing a monotropic

membrane with meridional fiber direction (C = 0) cross-

ing the z-axis

In the special case where the "bottle" relationship of K

and C. given in equation (32) is satisfied, the meridian
i

crosses the z-axis at right angles, and simple closed

"bottles" result. Where the parameters K and C. do not
i

satisfy equation (32), additional elements in the form of an

axial compression column or tension rod located in the

z-axis are necessary for equilibrium. A discussion of

such shapes has been given in reference i.

Shells containing monotropic membranes with C = 0 are,

from a practical point of view, not realizable in pure form

since all fibers of the C = 0 layers cross the z-axis at

the same location, resulting in a "pole" singularity, and

generating an impractical local buildup of material in the

winding pattern at the pole. This form of pressure vessel

has been approached by employing very small helix angles

(or small C-values). Such structures have been made
O

in the form of the "Bermuda bottles" (C _ 0, K _g) , and

as endclosures of "end-over-end" wound cylinders pro-

duced by several manufacturers of filament-wound pressure

vessels.
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(2)

Other possibilities in reducing the polar problem rest in the

use of wide bands for the C = 0 layers.

Type II {figure Z2): Closed bottles of singly connected vol-

ume incorporating a secondary closure structure for the

polar openings.

This type of pressure vessel needs to satisfy equation (32)

for axial balance unless axial tension or compression mem-

bers supporting unbalanced endclosure forces are added to

the design. As seen from figure i0, all "bottles" fall in the

realm of monotropic membranes in the form of corrugated

tubes. These corrugated tubes can be modified to include

a cylindrical portion of R = 1 between two converging por-

tions by application of a circumferential winding pattern

{C = I) Such "bottles" represent the ideal design for the

familiar type of filament-wound cylindrical pressure ves-

sels and rocket motor cases with "ovaloid endclosures"

{reference 2).

A section of a "corrugated tube" will have two polar open-

ings with a minimum radius of Rmi n _ C.I If a polar
rain

opening R > C. is required (for instance, for nozzle
I
min

attachments, etc.), then a circumferential retaining hoop

(C = i) must be inserted into the winding pattern to obtain

balance of an isotensoid structure requiring a special wind-

ing arrangement. In either case, a secondary closure

structure, normally consisting of a flanged ring or disk in-

sert, must be provided.

A discussion of the detail design problems for the flange at-

tachments is beyond the scope of this report. Suffice it to

note that the proper flange shapes may be derived from the

basic equations for isotensoid shells by introducing the con-

tact pressure between flange and filamentary shell into the

equations.

As in the case for Type I, excessive buildup of filaments at

the polar opening (i. e. , at the "turn around" point of the
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winding pattern) may result. This problem can be reduced
by use of a tension hoop, as discussed above, which pre-
vents the filaments from piling up at the turn around. Other
solutions that have found practical application consist of
using filaments of finite width (ribbon-winding) or by small
variations of the filament helix angle around a mean value
(wobble-winding), which tends to spread the buildup over a
finite domain of the interface area.

(l)

Containers with Doubly Connected Volume

Type III (figure 23): Closed toroids (doubly connected vol-

umes} generated from progressive loops.

Progressive loops, as shown in figure 9{a), may be used to

generate close toroidal pressure vessels in two ways:

(a) A compression-resistant hub structure may be used to

provide internal closure of a loop extending between

two minimum perimeters Rmi n of the meridional

curve. The filaments, in this case, may either be con-

tinuous around the torus meridian, or they may return

around retaining hoops located at the hub rims in the

fashion of an automobile tire, similar to the one shown

for Type II in figure 22.

(b) A compression-resistant hoop may be introduced in the

outward cusp of a single loop, providing the necessary

circumferential balance forces.

In either case, compression-resistant structural compo-

nents are required to close the pressure vessel. As a re-

sult, the elastic deformation of the shell due to pressuri-

zation cannot yield a geometrically similar shape which in-

sures uniform strain in each filament. Mismatched defor-

mations in the various components of the shell will normally

take place, and deviations from ideal isotensoid conditions

will be encountered in most cases.

(2) Type IV (figure 24): Closed toroids from closed loops.

Closed loops, as shown in figure 9(b), form an ideal basis
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for the design of isotensoid toroidal pressure vessels, un-
less large access holes or valve openings are required by
the particular design application.

(3) Type V (figure 25):
sive loops.

Closed toroids generated from regres-

Regressive loops, as shown in figure 9(c), may be used to

form closed toroidal pressure vessels in a similar fashion,

as discussed for Type III:

(a) Tension-resistant outer equatorial bands of finite width

(C = l) may be used to provide external closure of a

loop extending between two maximum perimeters r
O

of the meridional curve.

(b) A tension-resistant hoop may be introduced in the in-

ward cusp of a single loop, providing the necessary

circumferential balance forces.

(c) Of practical importance is the case where both outer

bands and an inner hoop are used for a complete torus

structure. The free choice of width and/or spacing in

the outer bands allows greater freedom in obtaining

particular design characteristics. Further, the use of

several bands allows construction of stable toroidal

pressure vessel configurations with only meridional

(C = 0) and perimetral (C = i) windings.

As opposed to the Type IIl, Type V employs tension-

resistant material only, thus, the conditions of uniform

extension throughout the structure may be satisfied by

proper dimensioning of the bands and hoops.

A review of the various isotensoid pressure vessels forming

shells of revolution indicates that in practice only the toroidai Types

IV and V can be made as completely closed containers and requiring

only tension-resistant filamentary material.

These types promise to be of interest in two aspects:

(I) Where foldable, pneumatically stabilized structures are re-

quired, filamentary materials made from strong fibers
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imbedded in an elastic matrix may be used. The absence of
any rigid, compression-resistant members favors the Types
IV and V for such application.

(2) Secondly, the monolithic structure of Types IV and V, and

absence of additional weights due to endclosures, such as

required for Type II, promises a high structural efficiency

for the toroidal shapes.

Toroidal isotensoid pressure vessels which were employed for

experimental verification of the theoretically derived data are dis-

cussed below.

EXPERIMENTAL STUDIES

Obj ective s

The experimental work reported here has been accomplished

with the following objectives in mind:

I . To establish experimentally the unrestrained meridional

shapes of filament-wound pressure vessels and to verify

that these shapes can be predicted analytically.

To demonstrate the theoretically predicted load-deformation

characteristics of toroidal isotensoid pressure vessels.

3. To explore failure mechanisms for this type of structure.

Experimental Method

General Approach

The objectives listed above have been satisfied by fabricating a

succession of filament-wound toroids, and by measuring these under

pressure. To allow the shells to assume their natural, unrestrained

shapes, they have been wound on flexible, inflatable mandrels with a

fine, smooth fiber. Where a bonding matrix was used, it has been

applied after winding in the form of liquid elastomer.
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The deformation-vs-load characteristics have been observed by
subjecting the toroids to a sequence of internal pressure levels.
Three distinct types of deformation have been observed:

(ii Linear strains in the fiber systems.

(2) Cross-sectional shape changes.

(3) Gross changes in the toroid shape.

Material Selection and Design of Test Articles

For the structural filament, a polyester fiber in the form of an
ll00 denier, untwisted, 250-end roving was chosen. This fiber has
a measured breaking strength of about 15 pounds, an ultimate elonga-
tion of about i0 percent, and a cross-sectional area equivalent to
about 0. 013 inch solid round.

The matrix material used is a polyurethane elastomer.

The reasons for the selection of these materials are as follows:

(I) The high elongation under load allows accurate strain meas-
urements to be made by simple, direct means.

(2) The excellent bending compliance of the composite material

allows the pressurized shell to assume its "natural" shape,

unaffected by bending stress systems resulting from incor-

rect initial shape.

(3) The combination of high strength-to-weight ratio and excep-

tional bending compliance of the composite material used is

attractive for use in efficient expandable structures.

The major portion of the test effort has been devoted to studies

of the meridionally-wound toroid of Type V. The size of these to-

roids was taken to be that of standard automotive inner tubes since

this provides a ready source of inflatable winding mandrels.

A typical cross-section for a meridionally-wound toroid is shown

in figure 26.



3O

The structure consists of three separate fiber systems:

(1) A meridional winding.

(2) An inner equatorial band.

(3) An outer equatorial band.

Other layers of material shown in figure 26 are non-structural
and result from the fabrication process.

Design data are given in Table I for two typical meridionally-
wound toroids.

Fabrication of Test Articles

The fabrication of the various toroids has been accomplished
with the aid of the toroid winder shown in figure 27. A typical pro-
cedure is as follows:

(1) An automotive inner tube has been used as a winding man-

drel. The tube is prepared by replacing the standard valve

with a flush-mounted basketball valve installed on the outer

equator. The tube is then brought to the correct meridional

perimeter by wrapping with polyester film tape of controlled

length per turn.

(2) The inner equatorial band, prepared on a separate mandrel,

is then taped in place on the inner equator of the tube.

(3) The tube is covered with a layer of light-weight nylon cloth

to insure against premature failure due to meridional splits.

(4) The meridional winding of structural fiber is then applied

by the toroid winder. The fiber is either pre-impregnated

or the winding is soaked with dilute elastomer and cured to

form the rubber-fiber composite material.

(5) The outer band, prepared separately, is then installed. The

valve hole in the outer equator is kept clear by making slits

in the windings parallel to the fibers.
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Test Instrumentation

The instrumentation used in the strain-vs-pressure tests has

been designed to measure the toroid deformation in three different

modes :

(1) Linear elongation of typical fibers in each fiber system.

(2) Volumetric expansion.

(3) Change of meridional shape.

The particulars of the various measurements are given in Table II.

Figure 28 shows a diagram of the toroid cross-section, indi-

cating the various measurements which were made. Figure 29 shows

the test set-up for toroid measurements with the extensometers used

to measure changes in meridional and equatorial lengths and the polar-

coordinate ring used to determine the meridional shape.

The toroid is pressurized by a motor-driven gear pump, which

transfers water from a weighable reservoir to the toroid. The volume

change is determined from the reservoir weight. The initial volume is

determined by weighing the toroid before and after filling with water.

Test Procedure

The polyester fiber used in this test program shows peculiar

elastic effects involving hysteresis and strain rate transients. These

were determined by a series of load-elongation tests made with single

fibers, bands, and cylinders. Typical results from these tests are

shown in figures 30 and 31. The effects of this behavior have made it

necessary to standardize on a fixed schedule for tension vs time in all

tests used for comparison of toroid tests to nominal materials prop-

erties in order to obtain a reproducible tension- vs- strain diagram.

The time intervals in the tension-vs-time schedule for the toroid

tests were determined by the requirements of the test itself. It was

found that five minutes were required to complete the readings at each

pressure level, and that a settling time of ten minutes was required

for the strain to settle to an essentially constant value over the read-

ing period.



32

In order to determine the pressure which corresponds to a given
tension level, considering the large deformations that occur, the
procedure described in Appendix C has been used, along with a pre-
diction of the strain at each level of tension, based on preliminary
load-strain tests of the fiber composite material.

Results

Instability Characteristics

Instability phenomena have been observed in toroidal pressure
vessels and reported, for instance, in reference 14. Such instabili-
ties will be expected particularly in those cases which are of struc-
turally underdeterminate nature, i.e., in shells containing two or
less fiber directions in certain domains of the structure. The in-
stability mechanisms are similar to those observed in magnetic bot-
tles designed to confine plasma at high pressure, where the magnetic
lines of force take the place of the filamentary texture (See, for in-
stance, reference 15). Other mechanisms of this type are those
found in soap bubbles (reference 16) or may be of the nature of the
"hydrostatic instabilities" observed in straight cylindrical tubes made
from isotropic material (reference 17).

Early tests of meridionally-wound toroids showed that similar
instabilities are apt to exist in these structures. Large-deformation
failure modes arise from the tendency of the toroid to increase vol-
ume at the expense of locally high shear and normal strains in the
matrix material which bonds the meridional fibers together.

Two different modes of this type of buckling have been observed:

(i) "Rolling" Modes

If the toroid consists of a meridional winding which is re-
strained circumferentially by an outer band only, (Type V(a)),
the toroid will exhibit a tendency for the meridional loops to
roll over and out of the equatorial band. This type of defor-
mation is shown in figure 32.

(2) "Baseball Seam" Modes

If the toroid consists of a meridional winding restrained by
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an inner band only, (Type V(b)), the toroid will buckle by
curling into a "baseball-seam" curve. Several types of
this mode are shown in figures 33 through 36, some exhib-
iting striking geometrical symmetry and beauty.

Strain Distribution

The results of the strain measurements made during the test of

Toroid #4 are shown in figure 37. The solid curve in the figure is a

plot made from tests of the material. The plotted points represent

measured values of strain vs pressure (reduced to fiber tension by

the method outlined in Appendix C).

Note that the volumetric strain (as defined in Appendix C) is con-

sistently greater than the strain in the meridian or that in the outer

equator measured along its average circumference. This observa-

tion points to an inherent inadequacy in this particular design; with-

out anomalous volume growth, the rolling could be attributable, for

example, to a combination of small manufacturing errors and high

sensitivity of the design to such errors.

The strain measurements obtained during test of Toroid #5 are

shown in figure 38 along with a curve of the nominal properties of

the fiber obtained from tests under equal load sequence.

The slight tendency to roll is exhibited by the three strain meas-

urements made on the outer equatorial band. This roll distortion

caused the inner band to be shifted about 0. 2 inch from the predicted

plane of symmetry prior to failure. However, the volumetric strain

was not significantly different from the other strain measurements.

Cross-Sectional Shapes

A comparison of the cross-sections of Toroid #5 at two pressure

levels with the theoretical curves is shown in figure 39. The heavy

curve shown is the theoretical isotensoid meridional torus section,

which is a composite of two isotensoid curves connected at the out-

side by the outer band and at the inside by a rounded corner repre-

senting the inner band contour. The light curve is a geometrically

similar enlargement of the heavy curve, using the toroidal-coordinate

origin as the invariant point. The enlargement factor is i. 07 (i. e.,

7 percent strain) corresponding to a fiber tension of 9 pounds.
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The points plotted along these meridional curves represent
measurements of the cross-section made with the polar coordinate
ring shown in figure 29. The points marked with circles are from a
measurement at 15 psi internal pressure or about 0. 5 pounds per fi-
ber, while the solid points represent the cross-section at 2.40 psi

internal pressure or 9 pounds per fiber.

In each case, the measured points have been located radially

with respect to a point obtained from a measurement of the outer

equator length. Hence, the corresponding sets of experimental and

theoretical cross-sectional data have been placed on the diagram in-

dependently from each other; these data are related through the

curve of nominal fiber properties (i. e., 7 percent strain at 9 pounds

tension) but otherwise bear no direct relation.

Examination of the data obtained at low pressure reveals that

the meridian is initially more nearly circular than theoretically pre-

dicted. This is attributable to the fabrication process: the matrix

material was applied and allowed to cure at low internal pressure of

the toroid. The initial shape, therefore, is influenced by the inner-

tube which tends to approach a circular section.

At the higher pressure level, the load carried by the fiber is

large compared with the load carried transversely by the matrix and

rubber tube, and the meridional shape is determined primarily by

the fiber. In this case the comparison between the theoretically pre-

dicted and the measured meridional shapes shows excellent agree-

ment. In the full-scale layout, the experimental points all fall within

•03 inch of the theoretical curve.

Additional cross-section measurements have been made with a

toroid of Type V(a) with inner band only (Toroid #3), shown com-

pleted in figure 40, and with a helix-wound toroid of Type IV (To-

roid #6} shown in the process of fabrication in figure ?.7.

Fair agreement between measured and theoretical ("isotensoid")

meridional cross-sections for both toroids are shown in figures 41
and 42.

Astro Research Corporation

Santa Barbara, California, July 20, 1961
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APPENDIX A

MONOTROPIC SHELLS SUBJECT TO

CENTRIFUGAL LOADING AND PRESSURE

Consider a monotropic membrane in the form of a shell of revo-

lution similar to the one shown in figure 5.

In addition to the normal load/unit length of filament due to a

uniform internal pressure, also consider a radial load vector F'02

caused by a rotation of the shell around the z-axis with an angular

velocity 02

Z (cos_)

F' : m' r_ /sine)\ (l-A)
02

where m' is the mass associated with a unit length of the filament.

The tangential component of this load vector is obtained by sca-

lar multiplication with the unit tangent vector -@t :

F t : = m' roe cos/3 sinc_ (Z-A)

The first equilibrium equation (13) becomes

dT Z
-- + m' ra_ cos_ sin0_ : 0
ds

and, since dr =- ds cosB sinff

dT = m' rJ dr

which integrates to

2 i(2T T : m02 r - r
o Z o

or

T

T
o

(l R2)  3A,: 1 + _-
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2 2
m'_r

O
where T is the fiber force at r and _- is the non-

o o T
O

dimensionalized centrifugal load parameter. Thus, the fiber force

is non-uniform and an "isotensoid" design would require a tapering

cross-section of filaments designed to keep the filament stress and

strain uniform.

The equilibrium conditions for the shell of revolution in axial

direction and in torque remain unaffected by the centrifugal force

field. Thus, equation (25a) becomes, for a single monotropic mem-

brane

T sinB R = T C (4-A)
O

Since, in general, T/T will differ from unity, the fiber paths are
O

obviously no longer geodesics. This may be verified by comparing

equation (4-A) with Clairaut's Theorem given in the form of equa-

tion (25a).

The axial equilibrium equation (30) becomes for a single mono-

tropic membrane:

2 R2 2n T cos_ - r 71p = n T cos_ cos_ r 77p
O O O O

or 1 - C 2 - __K (i- R 2) = cos_ - -- (5-A)
2 R 2

where I_ is defined by

2
2_ r p

O
K =

nT
O

Solving equation (5-A) for cos_ and substituting equation (3-A) for

T/T yields the intrinsic equation for the meridional shape of a
O

monotropic membrane subject to both a uniform internal pressure
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and a distributed centrifugal load associated with a rotation around
the z-axis and a uniform mass distribution per unit length of the
filaments:

2
cos0_ = (6-A)

_I _(___)I_ _A
I+-_ Rz

Thus, the equilibrium shape is defined by three characteristic

parameters:

(i) The parameter defining the fiber geometry: C

(Z) The parameter defining the pressure loading: K

(3) The parameter defining the centrifugal loading:
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APPENDIX B

MERIDIONALLY WOUND ISOTENSOID PRESSURE VESSELS

For the particular case of C - 0 (i. e., meridional fiber di-

jrection only) and for P : Po Constant equations (g9) and (30)
reduce to

r
o

0M

COS_ =

KR

K
i - -Z (i - R 2)

(i-B)

(2-B)

It can be shown (reference 18) that the shape of a buckled slender

column with large deformations, subject to eccentrical loading,

as shown in figure 6, satisfies an equation of the form (l-B) as

follows :

Let EI = bending stiffness of column

-P -- compressive load

Then the equilibrium condition for the buckled column becomes

or

Pr
EI

P

1 P

O E1

which can be transformed into equation (l-B) by setting

2
Pr

o
K

EI

(3-B)

Analytical solutions to this classical problem ("The Elastica")

lead to tabulated elliptical integrals of the first and second kind (ref-

erence 13), and have been worked out in detail by several authors
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(See, for instance, references 19 and 20). The derivations will not
be reproduced here, but only the principal results will be summa-
rized.

The lengths s of the column (or meridional lengths of the iso-
2

Pr
o

tensoid pressure vessel) is related to the parameter K = E-""'_ by

where

s 2

r ?r

Z

Elliptical integral of the first kind

Characteristic argument of elliptical integral.

The maximum deflection r of the column (or perimetral radius
o

of the isotensoid pressure vessel) is:

r
o

_s
r

o
(5-B)

The distance

the poles of the isotensoid membrane) is:

r

=h

o _,_

h between ends of the buckled column (or between

(6-B)

where

g : Elliptical integral of the second kind.

The "column analogy" for the meridional isotensoid uniform

pressure vessel has proven useful in gaining insight into the types

of solutions that can be expected. A workable analog device suitable

for general study has been constructed from a thin piano wire, loaded

by axial forces over adjustable bars, as shown in figure 7.
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Several solutions for the case C = 0 are shown in figure II.

Their general character shows a peculiarity, which has been dis-

cussed in reference 1.

The cusp case {K = 2) represents a closed ovaloid (Bermuda

bottle). Alternating loops crossing the z-axis between each maxi-

um occur between K = 2 and K = 4 These loops are progres-

sive for 2 < K < 3. 32 and regressive for 3. 32 < K < 4 The

transition case of K = 3. 32 represents a figure resembling a lem-

niscate from which a degenerated closed toroid of vanishing inner

perimeter can be formed by rotation around the z-axis.

The case K = 4 represents an aperiodic loop with both

branches asymptotic to the z-axis.

For K > 4 , regular, regressive periodic loops such as shown

in figure 9{c) occur.
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APPENDIX C

SUMMARY OF DATA REDUCTION RELATIONS

Calculation of Fiber Tension from Pressure

In order to reduce the pressure-vs-elongation data to terms of

tension vs strain for the meridional toroids, the effect of large de-

formations must be taken into account. This is accomplished as

follows :

The fiber tension in the meridional winding is given by:

Z
Z_pr

0

T -
n K

m

where

p = pressure

r = radius of outer equator
O

K = pressure load parameter

n m = number of fibers in the meridional windings

) denote the initial value of the outer equatorial radius,Let ro_o

zero pressure. Let E denote the fiber strain.

Then,

r = (r)I'+,,
0 0 0

and,

r 2 )Z
2P (o)o (I+ET - n K
m

at
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Calculation of Volumetric Strain

The volumetric strain is defined as the non-dimensional linear
scale increase which would correspond to a given increase in vol-
ume if that volume increase resulted from a geometrically similar
expansion of the pressure vessel. Thus, if (V

strain" corresponding to a volume increase AV

volume V , then,
O

Vo + AV = Vo (+ (V

is the "volumetric

from an initial

)3

This yields the "volumetric strain, " as,

AV3/1 + 1

EV = V Vo

Astro Research Corporation

Santa Barbara, California

September 30, 1961
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TABLE I
TYPICAL DESIGN DATA FOR TOROIDS

(Dimensions in Inches)

GENERAL

Outside Diameter (in.)

Pressure load parameter K

Volume (cu. in.)

Surface area (sq. in.)

Initial p/T, psi per lb.

Area of meridional loop (sq. in. )

Minimum radius for
concentrated inner band (in.)

MERIDIONAL WINDING

Perimeter (in.)

Number of turns

OUTER EQUATORIAL BAND

Inner diameter (in.)

Number of turns

Width (in.)

INNER EQUATORIAL BAND

Inner diameter (in.)

Number of turns

Width (in.)

TOROID # 4

Z7.2

5.7

2130

1340

TOROID # 5

?.8.9

5.0

3180

1640

7.5

20.0

5560

27.2

550

1.5

15.0

?.80

0.6

30.0

46.8

6.68

24. 5

79OO

?.8.9

750

1.7

13.6

650

1.2



46

TABLE II

DETAILS OF MEASUREMENTS

MEASUREMENT INSTRUMENT PRECISION

Meridian length

Outer band length

Inside diameter

Volume change
(reservoir wt. )

Extensometer

Extensometer

Steel tape

Platform scale

0.1%

o. 1%

o. 1%

o. 05%

o. 1%
Meridian shape

Elev.

Elev.

Elev.

of inner equator

of outer equator

of top meridian

Pressure

Polar-coord. ring

with dial gage probe

Height gage from

horizontal surface

to marks on toroid

Bourdon gage

of rain. rad.

of curve

0.2%
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Figure I.- Monotropic Membrane.
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Figure 2.- Coordinate Systems and Fiber Geometry for

Generalized Surface.
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Figure 3.- Forces on Filament Element.
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Figure 4. - Coordinate System and Fiber Geometry for

Surface of Revolution.
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Figure 5.- Pressure Loaded Shell Made from Several
Layers of Monotropic Membranes.
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Figure 7. - Column Analog Apparatus.
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Figure 8.- Isotensoid Meridional Shapes.



54

N

N

A _

F_
tit

O i
i

t)

,.o

v

r_

,,--4

0

"tJ
.r-i

0

©

0
r/l

i

o:

_a0



55

K

II

i0

9

6

4

Regressive_

J/ \
0 Progressive Loops

"5 gated
Tub es

r --r
o max

'ttles _
,gated Tubes

=r )
o rain

0
0

Hyperboloid

.8 .9 C

Figure I0.- Isotensoid Domains in Function of the

Parameters C and K.



56

Z

6

4 C=0 K=3

2

l_=lO

R

Figure ii.- Isotensoid Shapes for C = 0.
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Figure 12.- Isotensoid Shapes for C = + .25.
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Figure 15.- Isotensoid Shapes for Multiple Helix Angles.
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Figure 16.- Isotensoid Shapes for Multiple Helix Angles.
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Figure 21. Closed Isotensoid Pressure Vessel - Type I.
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Figure 22.- Closed Isotensoid Pressure Vessel - Type II.
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Figure 23.- Closed Isotensoid Pressure Vessel - Type III.
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Figure 24.- Closed Isotensoid Pressure Vessel - Type IV.
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Figure 25.- Closed Isotensoid Pressure Vessel - Type V.
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Figure 27.- Toroid Filament Winder.
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Figure 28.- Measurements Made on Toroid.



72

!

U')

(D

E_

0

0

!

c¢
cxl

or-i



73

16

15

14

13

IZ

ii

I0

9

I

Z 8
O
b-4

u_

Z 7

6
m

5

z

/
i/.
0

0

Figure 30.-

A

Y
lkl

/jr
2"

f
71
/

F

i

#

]
Y

Am

/

@-Single Fiber Test

OBand Test (60 Turns)

/I Cylinder Test

1 2 3 4 5 6 7 8 9 I0

STRAIN- PERCENT

Typical Load-Elongation Data For Polyester Fiber.



74

'8

0

!

0

.D

Z

M a_
Nm _

_ z

< _

'l

i

0

0 _

1

0 !)

_ <

0
0

o

o
0
o

o3

Z
0
L_

°_0

R z
<

L)

<
0

<

o _

o _
<

0

°r4

0

Q)

.,-i

I

°..-i

!

i1)

t,-- ,,D u'_ ,_

I

NI_H£S

I I



75

o;-I

,.o
_S

bml

o,-I

O

!

_o
°_-i



76

Figure 33.- Two-Lobed "Baseball Seam" Instability of Type V

Toroidal Isotensoid Pressure Vessel.

Figure 34.- Three-Lobed "Baseball Seam" Instability of Type V

Toroidal Isotensoid Pressure Vessel (Top View).
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Figure 35.- Three-Lobed "Baseball Seam" Instability of Type V

Toroidal Isotensoid Pressure Vessel (Side View}.

Figure 36.- "Python" Instability of Type V Toroidal Isotensoid

Pressure Vessel.
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Figure 41.- Cross-Section Measurement, Toroid #3.
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